62 research outputs found

    Rethinking Privacy for Extended Sanitizable Signatures and a Black-Box Construction of Strongly Private Schemes

    Get PDF
    Sanitizable signatures, introduced by Ateniese et al. at ESORICS\u2705, allow to issue a signature on a message where certain predefined message blocks may later be changed (sanitized) by some dedicated party (the sanitizer) without invalidating the original signature. With sanitizable signatures, replacements for modifiable (admissible) message blocks can be chosen arbitrarily by the sanitizer. However, in various scenarios this makes sanitizers too powerful. To reduce the sanitizers power, Klonowski and Lauks at ICISC\u2706 proposed (among others) an extension that enables the signer to limit the allowed modifications per admissible block to a well defined set each. At CT-RSA\u2710 Canard and Jambert then extended the formal model of Brzuska et al. from PKC\u2709 to additionally include the aforementioned and other extensions. We, however, observe that the privacy guarantees of their model do not capture privacy in the sense of the original definition of sanitizable signatures. That is, if a scheme is private in this model it is not guaranteed that the sets of allowed modifications remain concealed. To this end, we review a stronger notion of privacy, i.e., (strong) unlinkability (defined by Brzuska et al. at EuroPKI\u2713), in this context. While unlinkability fixes this problem, no efficient unlinkable scheme supporting the aforementioned extensions exists and it seems to be hard to construct such schemes. As a remedy, in this paper, we propose a notion stronger than privacy, but weaker than unlinkability, which captures privacy in the original sense. Moreover, it allows to easily construct efficient schemes satisfying our notion from secure existing schemes in a black-box fashion

    Key-Homomorphic Signatures: Definitions and Applications to Multiparty Signatures and Non-Interactive Zero-Knowledge

    Get PDF
    Key-homomorphic properties of cryptographic objects, i.e., homomorphisms on their key space, have proven to be useful, both from a theoretical as well as a practical perspective. Important cryptographic objects such as pseudorandom functions or (public key) encryption have been studied previously with respect to key-homomorphisms. Interestingly, however, signature schemes have not been explicitly investigated in this context so far. We close this gap and initiate the study of key-homomorphic signatures, which turns out to be an interesting and versatile concept. In doing so, we firstly propose a definitional framework for key-homomorphic signatures distilling various natural flavours of key-homomorphic properties. Those properties aim to classify existing signature schemes and thus allow to infer general statements about signature schemes from those classes by simply making black-box use of the respective properties. We apply our definitional framework to show elegant and simple compilers from classes of signature schemes admitting different types of key-homomorphisms to a number of other interesting primitives such as ring signature schemes, (universal) designated verifier signature schemes, simulation-sound extractable non-interactive zero-knowledge (NIZK) arguments, and multisignature schemes. Additionally, using the formalisms provided by our framework, we can prove a tight implication from single-user security to key-prefixed multi-user security for a class of schemes admitting a certain key-homomorphism. Finally, we discuss schemes that provide homomorphic properties on the message space of signatures under different keys in context of key-homomorphisms and present some first constructive results from key-homomorphic schemes

    Subversion-Resistant Quasi-Adaptive NIZK and Applications to Modular zk-SNARKs

    Get PDF
    Quasi-adaptive non-interactive zero-knowledge (QA-NIZK) arguments are NIZK arguments where the common reference string (CRS) is allowed to depend on the language and they can be very efficient for specific languages. Thus, they are for instance used within the modular LegoSNARK toolbox by Campanelli et al. (ACM CCS\u2719) as succinct NIZKs (aka zkSNARKs) for linear subspace languages. Such modular frameworks are interesting, as they provide gadgets for a flexible design of privacy-preserving blockchain applications. Recently, there has been an increasing interest to reduce the trust required in the generator of the CRS. One important line of work in this direction is subversion zero-knowledge by Bellare et al. (ASIACRYPT\u2716), where the zero-knowledge property even holds when the CRS is generated maliciously. In this paper, we firstly analyze the security of the most efficient QA-NIZK constructions of Kiltz and Wee (EUROCRYPT\u2715) and the asymmetric QA-NIZKs by Gonzalez et al. (ASIACRYPT\u2715) when the CRS is subverted and propose subversion versions of them. Secondly, for the first time, we construct unbounded (strong) true-simulation extractable (tSE) variants of them. Thirdly, we show how to integrate our subversion QA-NIZKs into the LegoSNARK toolbox, which so far does not consider subversion resistance. Our results together with existing results on (SE) subversion zk-SNARKS represent an important step towards a subversion variant of the LegoSNARK toolbox

    Practical Witness Encryption for Algebraic Languages Or How to Encrypt Under Groth-Sahai Proofs

    Get PDF
    Witness encryption (WE) is a recent powerful encryption paradigm, which allows to encrypt a message using the description of a hard problem (a word in an NP-language) and someone who knows a solution to this problem (a witness) is able to efficiently decrypt the ciphertext. Recent work thereby focuses on constructing WE for NP complete languages (and thus NP). While this rich expressiveness allows flexibility w.r.t. applications, it makes existing instantiations impractical. Thus, it is interesting to study practical variants of WE schemes for subsets of NP that are still expressive enough for many cryptographic applications. We show that such WE schemes can be generically constructed from smooth projective hash functions (SPHFs). In terms of concrete instantiations of SPHFs (and thus WE), we target languages of statements proven in the popular Groth-Sahai (GS) non-interactive witness-indistinguishable/zero-knowledge proof framework. This allows us to provide a novel way to encrypt. In particular, encryption is with respect to a GS proof and efficient decryption can only be done by the respective prover. The so obtained constructions are entirely practical. To illustrate our techniques, we apply them in context of privacy-preserving exchange of information

    With a Little Help from My Friends: Constructing Practical Anonymous Credentials

    Get PDF
    Anonymous credentials (ACs) are a powerful cryptographic tool for the secure use of digital services, when simultaneously aiming for strong privacy guarantees of users combined with strong authentication guarantees for providers of services. They allow users to selectively prove possession of attributes encoded in a credential without revealing any other meaningful information about themselves. While there is a significant body of research on AC systems, modern use-cases of ACs such as mobile applications come with various requirements not sufficiently considered so far. These include preventing the sharing of credentials and coping with resource constraints of the platforms (e.g., smart cards such as SIM cards in smartphones). Such aspects are typically out of scope of AC constructions, and, thus AC systems that can be considered entirely practical have been elusive so far. In this paper we address this problem by introducing and formalizing the notion of core/helper anonymous credentials (CHAC). The model considers a constrained core device (e.g., a SIM card) and a powerful helper device (e.g., a smartphone). The key idea is that the core device performs operations that do not depend on the size of the credential or the number of attributes, but at the same time the helper device is unable to use the credential without its help. We present a provably secure generic construction of CHACs using a combination of signatures with flexible public keys (SFPK) and the novel notion of aggregatable attribute-based equivalence class signatures (AAEQ) along with a concrete instantiation. The key characteristics of our scheme are that the size of showing tokens is independent of the number of attributes in the credential(s) and that the core device only needs to compute a single elliptic curve scalar multiplication, regardless of the number of attributes. We confirm the practical efficiency of our CHACs with an implementation of our scheme on a Multos smart card as the core and an Android smartphone as the helper device. A credential showing requires less than 500 ms on the smart card and around 200 ms on the smartphone (even for a credential with 1000 attributes)

    CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments

    Get PDF
    A critical aspect for the practical use of non-interactive zero-knowledge (NIZK) arguments in the common reference string (CRS) model is the demand for a trusted setup, i.e., a trusted generation of the CRS. Recently, motivated by its increased use in real-world applications, there has been a growing interest in concepts that allow to reduce the trust in this setup. In particular one demands that the zero-knowledge and ideally also the soundness property hold even when the CRS generation is subverted. One important line of work in this direction is the so-called updatable CRS for NIZK by Groth et al. (CRYPTO’18). The basic idea is that everyone can update a CRS and there is a way to check the correctness of an update. This guarantees that if at least one operation (the generation or one update) have been performed honestly, the zero-knowledge and the soundness properties hold. Later, Lipmaa (SCN’20) adopted this notion of updatable CRS to quasi-adaptive NIZK (QA-NIZK) arguments. In this work, we continue the study of CRS-updatable QA-NIZK and analyse the most efficient asymmetric QA-NIZKs by González et al. (ASIACRYPT’15) in a setting where the CRS is fully subverted and propose an updatable version of it. In contrast to the updatable QA- NIZK by Lipmaa (SCN’20) which represents a symmetric QA-NIZK and requires a new non-standard knowledge assumption for the subversion zero-knowledge property, our technique to construct updatable asymmetric QA-NIZK is under a well-known standard knowledge assumption, i.e., the Bilinear Diffie-Hellman Knowledge of Exponents assumption. Furthermore, we show the knowledge soundness of the (updatable) asymmetric QA-NIZKs, an open problem posed by Lipmaa, which makes them compatible with modular zk-SNARK frameworks such as LegoS- NARK by Campanelli et al. (ACM CCS’19)

    Updatable Trapdoor SPHFs: Modular Construction of Updatable Zero-Knowledge Arguments and More

    Get PDF
    Recently, motivated by its increased use in real-world applications, there has been a growing interest on the reduction of trust in the generation of the common reference string (CRS) for zero-knowledge (ZK) proofs. This line of research was initiated by the introduction of subversion non-interactive ZK (NIZK) proofs by Bellare et al. (ASIACRYPT\u2716). Here, the zero-knowledge property needs to hold even in case of a malicious generation of the CRS. Groth et al. (CRYPTO\u2718) then introduced the notion of updatable zk-SNARKS, later adopted by Lipmaa (SCN\u2720) to updatable quasi-adaptive NIZK (QA-NIZK) proofs. In contrast to the subversion setting, in the updatable setting one can achieve stronger soundness guarantees at the cost of reintroducing some trust, resulting in a model in between the fully trusted CRS generation and the subversion setting. It is a promising concept, but all previous updatable constructions are ad-hoc and tailored to particular instances of proof systems. Consequently, it is an interesting question whether it is possible to construct updatable ZK primitives in a more modular way from simpler building blocks. In this work we revisit the notion of trapdoor smooth projective hash functions (TSPHFs) in the light of an updatable CRS. TSPHFs have been introduced by Benhamouda et al. (CRYPTO\u2713) and can be seen as a special type of a 2-round ZK proof system. In doing so, we first present a framework called lighter TSPHFs (L-TSPHFs). Building upon it, we introduce updatable L-TSPHFs as well as instantiations in bilinear groups. We then show how one can generically construct updatable quasi-adaptive zero-knowledge arguments from updatable L-TSPHFs. Our instantiations are generic and more efficient than existing ones. Finally, we discuss applications of (updatable) L-TSPHFs to efficient (updatable) 2-round ZK arguments as well as updatable password-authenticated key-exchange (uPAKE)

    Structure-Preserving Signatures on Equivalence Classes and Constant-Size Anonymous Credentials

    Get PDF
    Structure-preserving signatures (SPS) are a powerful building block for cryptographic protocols. We introduce SPS on equivalence classes (SPS-EQ), which allow joint randomization of messages and signatures. Messages are projective equivalence classes defined on group element vectors, so multiplying a vector by a scalar yields a different representative of the same class. Our scheme lets one adapt a signature for one representative to a signature for another representative without knowledge of any secret. Moreover, given a signature, an adapted signature for a different representative is indistinguishable from a fresh signature on a random message. We propose a definitional framework for SPS-EQ and an efficient construction in Type-3 bilinear groups, which we prove secure against generic forgers. We also introduce set-commitment schemes that let one open subsets of the committed set. From this and SPS-EQ we then build an efficient multi-show attribute-based anonymous credential system for an arbitrary number of attributes. Our ABC system avoids costly zero-knowledge proofs and only requires a short interactive proof to thwart replay attacks. It is the first credential system whose bandwidth required for credential showing is independent of the number of its attributes, i.e., constant-size. We propose strengthened game-based security definitions for ABC and prove our scheme anonymous against malicious organizations in the standard model; finally, we discuss a concurrently secure variant in the CRS model

    Homomorphic Proxy Re-Authenticators and Applications to Verifiable Multi-User Data Aggregation

    Get PDF
    We introduce the notion of homomorphic proxy re-authenticators, a tool that adds security and verifiability guarantees to multi-user data aggregation scenarios. It allows distinct sources to authenticate their data under their own keys, and a proxy can transform these single signatures or message authentication codes (MACs) to a MAC under a receiver\u27s key without having access to it. In addition, the proxy can evaluate arithmetic circuits (functions) on the inputs so that the resulting MAC corresponds to the evaluation of the respective function. As the messages authenticated by the sources may represent sensitive information, we also consider hiding them from the proxy and other parties in the system, except from the receiver. We provide a general model and two modular constructions of our novel primitive, supporting the class of linear functions. On our way, we establish various novel building blocks. Most interestingly, we formally define the notion and present a construction of homomorphic proxy re-encryption, which may be of independent interest. The latter allows users to encrypt messages under their own public keys, and a proxy can re-encrypt them to a receiver\u27s public key (without knowing any secret key), while also being able to evaluate functions on the ciphertexts. The resulting re-encrypted ciphertext then holds an evaluation of the function on the input messages
    • …
    corecore